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The effective interface potential is derived for a superconducting layer attached 
to a wall. The expression applies to the neighborhood of a continuous wetting 
or delocalization transition, which exists for type I superconductors with a 
negative extrapolation length. From this potential a number of features can be 
easily derived, such as the locus of the phase transition and the critical 
exponents. Whereas the order parameter exponent is universal, other exponents, 
like the susceptibility exponent, are not. 
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1. I N T R O D U C T I O N  

In a type I superconductor  at or  near bulk coexistence between the super- 
conduct ing and normal  states, the properties close to the surface are 
strongly influenced by the material  in contact  with the superconductor .  It~ 
In particular, a superconduct ing layer, or  sheath, of  microscopic and even 
macroscopic  thickness can be induced at the surface of  a superconductor  
which, in the bulk, is in the normal  state (see refs. 2 for general references 
on superconductivity).  In  fact, it was recently shown 13~ that  type I super- 
conductors  exhibit a rich variety o f  surface phenomena  when the so-called 
extrapolat iqn length is negative. A negative extrapolat ion length has been 
observed in a number  of  materials, and can also be achieved by appropria te  
t reatment  of  the bounda ry  with which the superconductor  makes contact  
(see ref. 4 for a review). For  such systems the G i n z b u r g - L a n d a u  (GL)  
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theory is quantitatively correct and, on the basis of the GL equations, a 
detailed description of the surface behavior was given in ref. 3. The analysis 
was based on a numerical solution of the GL equations. 

On the other hand, the Landau free energy, in the guise of an effective 
interface potential, plays a central role in the extensive literature on wetting 
phenomena (see ref. 5 for a review). The effective interface potential, in this 
context, equals the equilibrium (Gibbs) free energy, with the additional 
constraint that the surface layer of the phase favored by the wall has a 
prescribed thickness. It is the potential experienced by a flat interface in the 
neighborhood of the wall. From this interface potential the properties of a 
continuous or weakly first order wetting transition immediately follow. 
In particular, an analysis exists for the case of a two-component order 
parameter, c61 which shows that nonuniversality of critical exponents is a 
natural consequence of the existence of two distinct length scales, each 
associated with a different component of the order parameter. The problem 
of a superconducting sheath induced by the wall is basically a wetting or 
delocalization problem. This aspect of the phenomenology described in 
ref. 3 can therefore conveniently be discussed in a similar framework. 

The construction of an interface potential from an underlying theory 
(in our case, the full Ginzburg-Landau equations) is, in general, a non- 
trivial taskJ 7 8~ It is the aim of this paper to derive the interface potential 
for our delocalization problem in a systematic expansion in the GL 
parameter x, which is the ratio of the magnetic penetration depth 2 to the 
superconducting coherence length ~. In the limit h"--, 0, an interface poten- 
tial for the superconducting/normal interface has recently been constructed 
by Blossey and IndekeuJ 91 However, for the discussion of the continuous 
delocalization transition, which is our concern here, it is essential to keep 
x finite, since this transition only occurs on the interval 0.374 < h" < 1/x//2J 3' 

To realize this program we recall, in Section 2, the basic expression for 
the surface free energy of a superconducting layer in contact with a wall. 
Minimization of this functional with respect to the relevant fields yields 
Euler equations precisely analogous to the equations of motion of a classi- 
cal dynamics problem in two spatial dimensions. The solution of this 
dynamics problem, for a given set of parameters, thus provides the exact 
equilibrium surface state, and integration of the corresponding order 
parameter profile yields the equilibrium surface free energy. However, our 
aim is, basically, no t  to calculate equilibrium properties, since the interface 
potential is the free energy with the additional cons t ra in t  of a prescribed 
thickness of the superconducting layer. Nevertheless, close to the delo- 
calization transition, this constraint is sufficiently mild that the constrained 
dynamical trajectories are, in the relevant region, close to those corre- 
sponding to unconstrained equilibrium. Thus, in order to construct the 
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interface potential, we need the equilibr&m wall-superconducting interface 
for parameter values at and near the delocalization transition. As a conse- 
quence we construct in Section 3 the equilibrium solution for a wall-super- 
conducting interface at criticality, using • as an expansion parameter. In 
Section 4 we extend this solution to the neighborhood of the delocalization 
transition. Expansion in K turns out to be very effective here. The final step 
is made in Section 5, where we introduce the constraint of a given thickness 
of the superconducting layer, and calculate the corresponding interface 
potential. For this calculation the equilibrium solutions of the previous 
sections are essential, and the parameters of those solutions are shown to 
be linked in a transparent way to those of the delocalization transition. 
The paper closes with a discussion of the relevant physics which can be 
extracted from the interface potential. 

2. THE  G I N Z B U R G - L A N D A U  S U R F A C E  FREE E N E R G Y  

In the GL theory the state of the superconductor is characterized by 
the vector potential A(r) and the complex order parameter ~(r) z. In the 
simple geometry of a flat wall with a magnetic field parallel to the wall, we 
may use for A(r) the gauge 

A(r) = (0, A(x), 0) (1) 

and a real function ~(x) depending only on the coordinate x perpendicular 
to the wall. Then the boundary condition for ~b(x) at the wall x - - 0  reads 

d4,(x)/dx I.,. =o = 4,(O)/b (2)  

where b is a material constant, the so-called extrapolation length. The 
corresponding boundary condition for A(x) relates to the magnetic field H 
and reads 

dA( x)/dxl.,.=o = / t o l l  (3) 

Several options exist to scale the physical quantities such as to make them 
dimensionless. It is convenient here to scale ~ with its bulk value @h 

~(x) =O(x)/Ob (4) 

such that q~ approaches 1 in the fully developed superconducting state. The 
spatial coordinate is measured in terms of the magnetic penetration depth 2. 
With this scaling one can derive the GL equations and the boundary 
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conditions (2) and (3) by minimizing the dimensionless free energy func- 
tional,13 

o'[~o, a]  = d x [ ( ~ b / K ) 2 - ~ o 2 + q ~ 4 / 2 + a 2 q ~ 2 - t - ( d - h ) 2 ] + r q ) 2 ( O ) / t c 2  (5) 

Here a is the appropriately scaled version of A, and h likewise that of H, 
with d = da/dx.  The parameter ~ is related to b by (note that our r is x 
times the r used in ref. 3) 

r = 2/b (6) 

Upon variation of a with rp and a we obtain the G L  equations 

~/x 2 = --~o + a2~o + ~p3 (7) 

d=a~o  2 (8) 

and variation of a with respect to ~p(O) and a(O) gives the boundary condi- 
tions at the wall, 

d(0)  = h, ~b(0) = r~0(0) (9)  

There are two additional conditions, the form of which depends on the 
physical state far from the wall, i.e., in the bulk. Equations (7) and (8), 
with x playing the role of "time," show that our problem is equivalent to 
one in classical dynamics, in which a point particle with anisotropic mass 3 
moves in two dimensions (a, ~o) in the potential 

V(a, ~o)= i 2 - ~ a  ~o--  � 8 8 1 6 2  1)'- (10) 

Clearly, this potential has a maximum at a = O, ~0 = 1, where V(O, 1 )=0 .  
In the dynamical analog, the boundary conditions at the wall play the role 
of initial conditions, whereas those in the bulk are final ones. The physics 
associated with delocalization requires, in general, bulk coexistence between 
two phases. In our problem, these two phases are the superconducting and 
normal states. We limit ourselves to strict coexistence here, which implies 
for h the value h,. = 1/x/~. If the state is normal as x --* oo, the final condi- 

tions are d (oo)=  l /v /2  , cp(oo)= 0. If the bulk state is superconducting, the 
final conditions become a (oo )=  0, ~o(oo)= 1. In the latter case the total 
energy in the dynamical analog is, clearly, o ~ = 0. At coexistence the total 
energy must also vanish when the asymptotic state is normal. 

3 The scaling used in ref. 3 removes the anisotropy in the dynamical analog. However, the 
scaling used here is more convenient for our present purposes. 
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The problem contains only two parameters: the ratio x and the wall 
parameter r. As x and b are material constants we may, with b negative, 
think about z as a temperature parameter running from small negative 
values at low temperatures to large negative values for temperatures close 
to the bulk transition point (at zero field). 

3. THE CRIT ICAL W A L L - S U P E R C O N D U C T O R  INTERFACE 

We shall now construct a solution of Eqs. (7) and (8) which describes 
the wall-superconducting interface. We must then supplement the initial 
conditions (9) by the final conditions a ( ~ ) = 0 ,  ~p(oo)=l.  For given 
parameters r and r this completely specifies the problem. In this section we 
do not consider arbitrary r, however, but specialize to r,., corresponding to 
the critical temperature for a continuous "wetting" or delocalization trans- 
ition. That the solution found in this section has this status will only 
become clear in Section 5. The solution will be constructed as a power 
series in x. 

We write ~p as a perturbation of the bulk value 

cp=l  + f  (11) 

and consider f and a as small. Then (7) and (8) become 

f _  2x2f = x2[a2(1 + f )  + 3f2 + f 3 ]  (12) 

i i - a  =2af  +a f  2 (13) 

We solve (12) and (13) in a leapfrog scheme: in first order we start with a, 
then determine f in second order, a in third order, etc. Thus we determine 
a I from 

ill(x) - a l ( x )  = 0  (14) 

of which we take the dying exponent 

a t ( x )=Ae-"  (15) 

since a = 0 in the superconducting phase (with our choice of gauge). We 
then linearize (12) to get 

f2( x) - 2x2f 2(x) = x2a~ = x2A2e -2.,- (16) 

In solving (16) we could freely add a solution of the homogeneous equa- 
tion. However, we insist that the homogeneous contribution to f2 vanishes 

822/87/5-6-24 
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here, As will become  appa ren t  in Section 5, this is equivalent  to setting 
r =  ~c- O u r  solution of (16) is then 

K 2 

f2(x) = 4 - 2K - - - ~ -  Aze-2" (17) 

The  procedure  now becomes  clear. In third order  we determine a 3 f rom 
(13), with the terms conta ining a factor A 3 on the r ight -hand side, 

K 2 
- -  A 3 e  - 3 x  (18) 

a 3 ( x ) - - a 3 ( x )  = 2 a , f 2  2 _ _ X 2  

The solution is 

K 2 
a3(x) = A3e -3x (19) 

8(2 - x 2) 

In this way one continues.  The full solution can be summar ized  as 

f ( x )  = Y" f~sA2Je -2i' (20) 
j = t  

a(x) = ~ azj+ iA ~i+ le-~2i+ t~.,- (21) 
j = 0  

in which the coefficients azi+t and f-s, to be determined recursively, depend 
on x only. We list the first few explicitly, 

al  = 1 ( 2 2 )  

K 2 

__f2=4_ 2K 2 at  (23) 

1 
a3=-~a,f2 (24) 

K 2 

f4 - 16 - 2 - ~ x  2 (2a, a 3 + a~fz + 3f~) (25) 

1 
a5 =~-5; (2a, f4 + 2a~f2 + a , f~ )  (26) 

Aq- 

The impor tan t  point  is that  in each step involving f2s, a factor x 2 is added 
such that  for small  x the series rapidly converges.  Convergence  is accelerated 
by the increasingly large factors appear ing  in the denominators .  Thus  a t is 
of  order  x ~ f_, and a 3 are of  order  x -~, f4 and a5 are of  order  K 4, etc. 
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The series (20) and (21) represent a full solution to the nonlinear 
problem (12) and (13). We still have to consider the initial conditions (9), 
and we have only one parameter A to play with. We use A to match the 
first condition, which reads at coexistence 

6(0)= l/x/'2 (27) 

With (21) we may write this as 

~. a,j+,AZJ+'(2j+ 1)= -- l/x,/2 (28) 
j = 0 

As the a2j+~ contain increasing powers of x 2, one can solve for A as a 
power series in x 2. The result is 

1 ( 3K-~ 57K4 1879h 6 ) 
A,.= 7 -- 1 + - ~ - +  2 - - ~ + ~ +  "'" (29) 

We may now ask for which value of r the solution (21), with A = A,. 
given by (29), matches the second initial condition of (9). We call this 
value r,., anticipating that it will be the critical r for continuous delocaliza- 
tion of the interface (see Section 5). Equation (9) gives 

s 
r , . - - -  (30) 

1 +f, .(O) 

withf,.(x) the value o f f (x )  for A =A,.. From the forgoing formulas we can 
derive an expansion for r,. in powers of x 2, 

K2( 9K2 27K4 ) 
r, .= ---~- 1 + - ~ - + - ~ +  ...  (31) 

This value may be compared with the numerically obtained locus z,(x) 3. 
Expression (31) fits already the least favorable case, with K taking its maxi- 
mal value h: = 1/x/~, within 1%. (Note again that our r is x times the r of 
ref. 3.) 

4. THE W A L L - S U P E R C O N D U C T O R  INTERFACE NEAR % 

As a first generalization of the results of Section 3 we now consider the 
wall-superconducting interface [again with final conditions a ( m ) = 0 ,  
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~p( oo ) = 1 ] at r = z,. + Az, with Az sufficiently small that linearization in the 
deviation is meaningful. The solution (20) and (21) will now be of the form 

f ( x )  = f,.(x) + AB g(x)  + LIC h(x) 

a(x) = a,.(x) + AB b(x) + zIC c(x) 

(32) 

(33) 

where f,.(x) and a,.(x) are the functions (20) and (21) with A replaced 
by A,.. The functions g(x)  and b(x) result from a shift from A,. to 

A = A,.(1 +AB)  (34) 

such that g(x) and b(x) are generated as in (20) and (21) with coefficients 
g2j and b2j§ given by 

g2j=(2 j ) f2 i ,  b~_j+, = ( 2 j +  l) a2j+l 

(and A =A,.). The new functions h(x), c(x) are results 
homogeneous solution of Eq. (16) to f_,. 

The coefficients AB and AC are assumed to be of linear order in At. 
That is, we linearize (12) and (13) around fc(x)  and a,.(x) to obtain 

h ' -  2x2h = x2(Fh + Hc) 

( - -  c = Hh + Gc 

(35) 

of adding a 

(36) 

(37) 

where the functions F, G, and H can be expressed in terms off,.  and a,. as 

F = 6 f , . + 3 f Z + a ~  

G =  2f, .+ f~  

H = 2ac + 2acf,. 

These functions can all be written in terms of a series, e.g., 

(38) 

(39) 

(40) 

F ( x )  = ~., F2j(x) (41) 
j=l 

with 

F2i( x ) = F2jA 2je-  2j.,- (42) 

Likewise, G is a series in even powers of e- 'L while the series for H con- 
tains odd powers only. 
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The perturbation scheme for the Eqs. (36) and (37) is initiated by the 
term 

ho(x) = e  -~'/~2x (43) 

which generates the series 

h (x )=  ~ h2jA~Jexp[ - ( 2 j + x  .v/2)x] 
j=0 

C(X) = E C2j+ IA~ j+l exp[ - - (2 j+  1 + X X/~)x]  
j=0 

where the coefficients are determined recursively as 

(44) 

(45) 

h 0 = 1 (46) 

Hi h0 1 
c~ ( l + x x / ~ ) _ , _ l  x x / ~ ( l + x / v / ~  ) (47) 

K2(F2ho + Htc l )  X 2 
h2 ( 2 + x x / ~ ) 2  2K z 4 + 4 x x / ~ ( 2 c ~ + l + 6 f 2 )  (48) 

Note that h 0 is of order x ~ c~ of order x - t ,  h2 and c 3 of order x, h 4 and 
c5 of order K3, etc. 

With AB and AC at our disposal we can match the initial conditions 
(9). The first one gives 

AB [~(0) + AC ?(0) = 0 (49) 

by which we can express AB in terms of AC. Expanding in powers of x, we 
find 

zIG ('1 x K z K 3 ) 
A B =  x v / ~  \ +V/~  2 4 x / ~  t - ' ' "  (50) 

The other initial condition provides a relation between At, AB, and AC, 

j%(o) + A e  g(O) + Ac ~i(o) 
rc+A~ - (51) 

1 + f,.(O) + LJB g(O) + AC h(O) 

In view of (30) the linearized form of (51) is 

g(o) /h(o) 
r,. \ f~(0)  l + f - - f ~ )  +AC{~----kf~(0) 

h(0) "~ (52) 
1  -Z o)j 
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As all these quantities are known in expansions in x we find, using (50), 

1 3 x 13K 2 129K 3 135K 4 \ 
A C = - A r  - - + - +  + - - -  + i ~ - + . . . )  (53) 

8 128 1024 

Thus (32) and (33) represent a solution of the wall-superconductor inter- 
face when initial conditions in the form (50) and (53) are used to express 
AB and AC in terms of At, in the linear regime around r,.. 

5. THE EFFECTIVE INTERFACE POTENTIAL 

The solution constructed in Section 4 represents a wall-superconduc- 
tor interface, since the asymptotic behavior for x---, oo corresponds to the 
superconducting state in which ~0 = 1 and the magnetic field ~ = 0. In the 
dynamical language, the trajectory climbs to the top of the potential 
landscape at ~0 = I and a = 0. The wall-superconductor interface is part  of 
the total surface profile for the case when the superconducting-normal 
interface is delocalized, i.e., when the superconducting sheath is of  essen- 
tially infinite (macroscopic) thickness. The remaining part  of the surface 
profile is then a fi'ee superconducting-normal interface. 

However, for temperatures below that of the delocalization transition, 
the free energy is lowered by a superconducting layer of finite thickness 
near the wall, in coexistence with the normal state in the bulk. Dynamically 
this means that the trajectory bends away from the top and runs toward 
q~ = 0 and a = oo, obeying the final conditions q~(oo)= 0 and 6( ~ ) =  1/x/~. 
Thus we are forced to include growing exponentials in the dynamical solu- 
tion. This presents a problem, because the growing expontials diverge for 
large values of x and cannot be handled in the perturbation scheme, nor 
in the integrals. In ref. 6 the way to solve this problem was outlined. 

One has to consider the trajectory of a free interface between a super- 
conducting and a normal  state. It runs from the top q~= 1, a - - 0  for 
x ~ - oo to q~ = 0, a = oo for x ~ oo. The location of the interface is a free 
parameter, which does not influence the form of the trajectory. We take it 
at x = l  (as x = 0  is already reserved for the position of the wall). Such a 
free interface is, for x ~ l, well described by the functions 

f . (x )  = - Q e x p [ x v / 2 ( x - l ) ] ,  a i ( x )=exp[x - l ]  (54) 

where Q is a characteristic of the interface, defined as 

Q =  lim f~(x)/[a~(x)] ~'fi-- (55) 
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Q depends only on x and its calculation poses a separate problem. We give 
here the first few terms in an expansion in powers of x, which we have 
computed using a technique developed by Boulter and Indekeu ~ io~: 

Q = �89 1 + [x/2(v,'~)] ln(2x/K~) + . . .  } (56) 

K0 is a numerical constant which to zeroth order in K reads K0 = 0.795. 
The interface potential is the surface free energy with the sheath thick- 

ness constrained to take the value 1. In order to construct the interface 
potential, we must first consider the dynamical solutions corresponding to 
sheaths with finite thickness/. They have the form 

f(x) =fo(X)+ff(x) 

a(x) = a o ( X ) + f a ( x )  

(57) 

(58) 

where f0(x) and ao(x) are the solutions (32) and (33) for a given At. The 
small increments will be represented as 

Of(x) = 6B g(x) + 6C h(x) + 6D j(x)  + fiE k(x) 

fa(x)  = fiB b(x) + f C  c(x) + fD  d(x) + fiE e(x) 

(59) 

(60) 

The new set j(x), d(x) is very similar to h(x), c(x). It is generated by the 
seed 

jo(x ) = e ~- 45- .,- (61) 

and leads to the series 

j (x)  = ~" " "J JzjAT. exp[ - - (2 j - -x  x/~) x]  
j = 0  

d(x) = '~. dzj+, A,'-. j+l exp[ - ( 2 j +  1 --K x/'~) x ]  
j = 0  

(62) 

(63) 

In fact, one can obtain j (x)  from h(x) and d(x) from c(x) by changing the 
sign of x. 

The construction of the set k(x), e(x) is slightly more involved. The 
seed for the recursion is 

e _ 6 x )  =eX/A,. (64) 
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The next quantity is ko(x). It follows from the equivalent of (36), 

]~o(X) - 2x2ko(x) = xZHI(x)  e_  ~(x) = 2x 2 (65) 

with the solution 

ko(x) = - 1  (66) 

In the following step a complication arises. The equation for e~(x) reads, 
in view of (37), 

~,(x) -- e l (x)  = H,  (x) ko(x) + G2(x) e_ ,(x) = 2 ( f  2 - 1 ) e -"- (67) 

This has the solution 

e,(x)  = (1 - f 2 )  x e - "  (68) 

From here on we get terms with and without a factor x. The resulting 
series is 

t "~j �9 k(x)  = ~. ( k 2 j + k z j x )  A 7. exp[ - - 2 j x ]  
j = o  

(69) 

e (x)=  ~ ( e z j + l + e z j + t x )  A , 2 J + l e x p [ - - ( 2 j + l ) x ]  (70) 
. i =  - I 

The coefficients can again be determined recursively, as we already started 
doing in (64)-(68). For the leading terrain the interface potential we do not 
need coefficients beyond those given here. 

With (57)-(60) we have a solution with four free amplitudes, provided 
they all are small. The equilibrium solution has to satisfy four conditions, 
two initial conditions and two final ones. In other words, for the equi- 
librium solution the number of equations matches the member of unknowns. 
However, we are not aiming directly for the equilibrium solution and its 
surface free energy, but want to construct the interface potential for a 
prescribed thickness l of the superconducting sheath. What we need to 
compute is then the free energy differences corresponding to interfaces with 
different values of I. The equilibrium thickness leq follows from minimiza- 
tion of this interface potential. Clearly, these free energy differences must be 
finite. With growing exponentials allowed in our solutions, there seems to 
be a serious problem. As shown in ref. 6, however, the corresponding 
divergence problems can be circumvented by subtraction from the free 
energy of the profile considered, that of the free interface located at l. With 
the assumption that the equilibrium value /eq is large and that the given 
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value l is not too different from l eq  , w e  can then implement the constraint 
by insisting that the trajectory asymptotically matches that of a free inter- 
face located at l. From (54) and the leading terms in (59) and (60) one can 
check that this is accomplished by setting 

f D =  - Q e  -~'/5-1, f E =  A,.e -I (71) 

Taking l sufficiently large makes the f D  and f E  small enough to justify the 
linearization of the GL equations. The stipulation (71) removes divergences 
associated with growing exponentials. An additional source of divergences 
in the free energy exists, however. If two constrained solutions would corre- 
spond to different dynamical energies, this would lead to a linear divergence 
in the free energy difference. It is consequently essential in the construction 
of the interface potential to insist that all constrained solutions have the 
same dynamical energy. From (5) and (10) it follows that twice the 
dynamical energy reads 

2g = (~b/x) 2 + 62 - a2cp 2 - ~(~0-- 1 '  ~ )2 (72) 

At coexistence, the common value for all acceptable solutions is o ~ = 0. 
When we evaluate ~ from (57)-(60), we have to multiply series with many 
exponentials. We can use the fact that g = 0 to restrict the calculation to 
products that lead to a constant. All other combinations automatically 
cancel. To second order in the 0's the energy requirement reads 

g =  - 4 ( A C  + fC)  diD-  2(1 + AB + fB)  fiE 

- 2 ( I + d B - - 3 A C ) f D f E + ( I + 2 d B ) ( 6 E ) 2 = O  (73) 

Note that for 6D = f iE= 0 (as in Section 4), g vanishes automatically. 
With the stipulation (71) we now have three equations, the energy 

requirement (73) and the two initial conditions (9), to determine the 
remaining constants 6B and 6C. In general, no choice of 6B and 6C can 
fulfill all requirements. Since the energy requirement is unexceptionable, we 
must be willing, when optimizing the interface potential, to relax somewhat 
the initial conditions. Note that there is no paradox here: the constrained 
solutions basic to the interface potential are not solutions to the full 
dynamical problem, except when l = leq. 

Thus we must find the best values of fiB and 6C by optimizing the free 
energy under the constraint of a given g, which at coexistence takes the 
value ~ = 0. We shall see that, to leading order in the interface potential, 
we do not have to carry out this program in detail. 



1348 van Leeuwen and Hauge 

We now compare the free energy of the sheath solutions with that of 
a wall-superconductor interface plus a free interface. The latter two are 
given by 

fO ~f-�84 ao = dx ),0(x) + z~0~(0) (74) 

tri= dx ?i(x) (75) 

where ?(x) is the integrand of (5). The difference of a for the sheath and 
ao + a; gives the interface potential Oa. We write it as 

�9 ~ 0 

6~=Io  d x [ 7 ( x ) - ) , , ( x ) ] - f _ . ~ ,  dx) , ; (x)+zcp2(0)-~o (76) 

In the first integral the diverging exponentials cancel by the choice (71). 
In the second integra! we may use (54) in the whole interval. Thus (76) is 
a well-defined expression for the interface potential. 

By working out the separate terms we distinguish three classes: those 
involving fc~ and ao only, those linear in Of and Oa, and the higher order 
terms in the O's. The terms in the first class cancel exactly due to the sub- 
traction of o'o. The linear terms mostly vanish due to the variational 
character of the expression (5) for o-, and the fact that fo and ao satisfy the 
equations of motion and the boundary conditions at x = 0. In linear order 
all that remains is a term from the boundary at x ~ oo, resulting from 
partial integration of the terms with of  and &i. As a result we find 

d o =  lim [2f~(x)cSf(x)/K2+2dt~,(x)da(x)]+O(d 2) (77) 

From the series for the various functions it is easy to see which terms 
survive as x ~ oo. We find 

6a = - 2____~ A C d D  - 2( 1 + AB)  dE  + 0(~2)  (78) 
K 

Note that the second integral in (76) leads to contributions of order 6 -~ 
only. Thus we have found the leading order of the interface potential. 
Using (71 ), one finds the explicit dependence on l as 

da(l) = 2  x/~ Q ACe_~.,/2_t 2A,.( 1 +,6B) e - t  
K 

(79) 
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Equation (79) is our final result for the interface potential. The leading 
terms in a K expansion of Q are given in (56), zIC is linearly related to Ar 
by (53), and A,., which is negative, is given by (29). 

Since the coeff• of the second exponential, e-~, is positive, mini- 
mization of 6a shows that, for negative AC (low temperatures), lCq is finite. 
On the other hand, for AC>O (higher temperatures), the equilibrium 
thickness of the superconducting sheath diverges (i.e., becomes macro- 
scopic). In other words, there is a delocalization transition at r = ~,,, as 
anticipated in Section 3 

6. C O N C L U D I N G  R E M A R K S  

In this paper we have constructed the interface potential for the super- 
conducting-normal interface close to the delocalization transition. The fact 
that such a potential can be systematically constructed on the basis of an 
underlying theory is in itself nontrivial. The standard difficulty of finding an 
effective means of constraining the interface could be solved here, as in the 
technically simpler case studied in ref. 6, by stipulating the value of small 
amplitudes of growing exponentials close to the (superconducting) top in 
the dynamical landscape. 

Note that our procedure differs from the prescription of Jin and 
Fisher t71 in the following way. They insist that the boundary conditions at 
the wall are strictly obeyed. The boundary conditions at the wall and at 
infinity, together with the imposition of the thickness of the layer, do not 
permit the interface profile to assume everywhere its optimal shape. Jin and 
Fisher compromise by gluing together two optimal profiles at the position 
of the interface, which leads to a (small) singularity in the profile at the 
position of the interface. Our profile obeys everywhere-the minimalization 
equations (7)-(8), and has therefore no singularities near the position of 
the interface. Instead, we relax the boundary conditions at the wall in order 
to have the freedom to prescribe the thickness of the interface. The free 
energy associated with deviations fi'om the boundary conditions turns out 
to be of higher order than that due to the fluctuations in the position of the 
the interface. Therefore, the fluctuations at the wall do not contribute to 
the leading" order of the interface potential. 

Minimization of the interface potential (79) immediately gives 

In[A,.(1 + AB)/(2Q AC)] 
l~q - -  ( 8 0 )  

1 - -  K X//2  

which shows that /eq diverges logarithmically as z l C ~ - A r g O - .  The 
logarithmic divergence is in agreement with the numerical solution obtained 
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in ref. 3. The nature of this divergence of the effective order parameter /eq 
is clearly universal. Note that the amplitude diverges when x approaches 
1/x//2, which was already noted by Speth (~1) (see ref. 5 for a review of 
Speth's work). This was interpreted to imply that only at x = 1/x/~ does a 
wetting transition take place. It should be clear that we do not agree with 
that interpretation. 

On the other hand, it follows from (79) and (80) that the equilibrium 
surface free energy is singular as the delocalization transition is approached 
from below, with the singular contribution behaving as 

~a:q ~ - ( - A C)1/(t - ~ ,/5-,I ~ _ (/It)~/(~ - ~ ~1  (81) 

demonstrating that most other exponents depend on the material parameter 
~c in a continuous manner. The exponent in (81) is commonly referred to 
as 2 -  0c,., which here equals 7.,., since fl.~ = 0, in view of the logarithmic 
divergence of (80). Clearly, 0~,. < 0, starting from ~,. = 0 at x = (2 x/~) - i, 
and with ~.,.--, - o o  as x--, ( l /x/2) .  

From ref. 6 one would expect that there is a crossover from a con- 
tinuous to a first-order delocalization transition when twice the exponent in 
the slowest exponential equals the exponent in the next to slowest one, i.e., 
when ~c = (2 x / ~ ) - ~ =  0.354. However, in the present case this transition is 
preempted by another first-order transition, that of nucleation of a macro- 
scopic layer directly from the normal state (at the value x = 0.374, which 
is rather close). This nucleation line continues (3) via a tricritical point as a 
line of continuous transitions to positive values of r. An analytic theory of 
this transition based on the GL equations, beyond the x ~ 0 results given 
in ref. 9, remains an open problem. 

It is remarkable how efficient the expansion in powers of x is for this 
surface problem. As an example, in Section 3 we calculated the locus of the 
critical delocalization temperature r,. to (9(K6), which in the original physi- 
cal variables reads 

2( T,.) X2 ( 9K2 27K 4 ) 
--b 4 1 + - ~ - +  2 - ~ - +  ... (82) 

in excellent agreement with the numerical results of ref. 3. It is our belief 
that the entire phase diagram given in ref. 3 can be calculated in expansions 
in x, but this is beyond the scope of the present paper. 

Finally, the challenge to the experimentalists is to confirm the phase 
diagram predicted in ref. 3. This paper adds an even more demanding 
challenge: Determine experimentally some nonuniversal exponent associated 
with the delocalization transition! 
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